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Sex and recombination are central processes in life generating
genetic diversity. Organisms that rely on asexual propagation risk
extinction due to the loss of genetic diversity and the inability to
adapt to changing environmental conditions. The fungus-growing
ant species Mycocepurus smithii was thought to be obligately asex-
ual because only parthenogenetic populations have been collected
from widely separated geographic localities. Nonetheless, M. smithii
is ecologically successful, with the most extensive distribution and
the highest population densities of any fungus-growing ant. Here
we report that M. smithii actually consists of a mosaic of asexual and
sexual populations that are nonrandomly distributed geographi-
cally. The sexual populations cluster along the Rio Amazonas and
the Rio Negro and appear to be the source of independently evolved
and widely distributed asexual lineages, or clones. Either apomixis
or automixis with central fusion and low recombination rates is
inferred to be the cytogenetic mechanism underlying parthenogen-
esis in M. smithii. Males appear to be entirely absent from asexual
populations, but their existence in sexual populations is indicated by
the presence of sperm in the reproductive tracts of queens. A phy-
logenetic analysis of the genus suggests that M. smithii is mono-
phyletic, rendering a hybrid origin of asexuality unlikely. Instead,
a mitochondrial phylogeny of sexual and asexual populations sug-
gests multiple independent origins of asexual reproduction, and a
divergence-dating analysis indicates that M. smithii evolved 0.5-1.65
million years ago. Understanding the evolutionary origin and main-
tenance of asexual reproduction in this species contributes to a gen-
eral understanding of the adaptive significance of sex.
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he vast majority of metazoans reproduces sexually, enjoying
the benefits of genetic recombination (1-3) such as rapid
adaptability to novel ecological conditions (4, 5) and the purging of
deleterious mutations from their genomes (6, 7). However, relative
to sexually reproducing organisms, an asexual female doubles its
fitness by transmitting its entire genetic material to the next gen-
eration (8). Despite such obvious short-term fitness advantages,
asexual organisms occur only sporadically throughout the tree of
life and are predicted to be evolutionarily short-lived and doomed
to early extinction (9-11). In contrast to the short-term advantages
of asexuality, the adaptive value of sexuality, that is, genetic re-
combination, is expected to be of long-term benefit (2, 12-14).
There remain in evolutionary biology significant unexplored ques-
tions about whether sexual reproduction is favored by natural se-
lection over short evolutionary time spans and, if not, why sexual
reproduction persists as the prevalent mode of reproduction, given
that the selective benefits are deferred. Studying the origin and
evolution of parthenogenetic lineages, and understanding how
genetic diversity is generated and preserved in such lineages, is
essential to answering these questions.
Asexual reproduction by females, or thelytokous partheno-
genesis, has recently been reported in queens of the fungus-
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growing ant Mycocepurus smithii in three geographically distant
populations in Latin America: Puerto Rico (15), Panama (16),
and Brazil (17). The widespread geographic distribution of asex-
uality and the complete absence of males from field collections
and laboratory colonies suggested that M. smithii might be obli-
gately asexual (16, 17), and one study proposed that asexuality in
this species might be ancient (16). Among bees, wasps, and ants,
thelytokous parthenogenesis has so far been observed in the Cape
honey bee (18, 19) and in 12 distantly related species of ants (17,
20-23). Population-genetic studies of some species revealed a di-
versity of highly complex genetic systems, including different cy-
togenetic mechanisms used to produce workers and queens,
facultative sexual reproduction, and clonal male lineages (23-27).
Asexual eusocial Hymenoptera produce diploid offspring via
meiotic parthenogenesis, or automixis, in which a limited amount
of genetic variability is generated through fusion of sister nuclei
(28-31). In contrast, mitotic parthenogenesis, or apomixis, in
which offspring are genetic clones of their mothers, has not been
demonstrated unambiguously in social insects.

Although many theoretical studies predict the costs and benefits
of sex, little is known about the evolution of asexuality at the or-
ganism level (2). To study the origin and maintenance of parthe-
nogenesis and to elucidate the mechanisms generating genetic
diversity in parthenogenetic lineages, we investigated the evolu-
tionary history of the asexual fungus-growing ant M. smithii. To
test for obligate asexuality in M. smithii, we developed highly
variable short tandem repeat (or microsatellite) markers and an-
alyzed colonies from multiple populations across the species’s
broad range, extending from Mexico to Argentina and including
some Caribbean islands (32, 33). To identify the genetic structure
within and between populations of M. smithii and to infer the cy-
togenetic mechanism underlying parthenogenetic reproduction,
we genotyped sterile workers and reproductive queens from
234 colonies. Clonality was inferred by genetic identity between
nest mates. Controlled laboratory breeding experiments com-
plemented our field observations. To test for a potential hybrid
origin of parthenogenesis in M. smithii, we reconstructed a mo-
lecular phylogeny of the genus Mycocepurus. An additional fine-
scaled mitochondrial phylogeny of asexual and sexual M. smithii
populations was used to investigate whether asexuality arose
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once or multiple times independently from sexually reproducing
ancestors. Lastly, we performed a divergence-dating analysis to
estimate the time span over which parthenogenesis has persisted
in M. smithii, because asexuality was previously proposed to be of
ancient origin.

Results

Population-Genetic Analyses. A total of 1,930 M. smithii individuals
from 234 colonies collected at 39 different localities in Latin
America (Fig. 1 and Table S1) was genotyped at 12 variable
microsatellite loci yielding 106 alleles (range: 2-15 alleles per
locus). The number of alleles per locus per individual never
exceeded two, indicating diploidy of females. Of the genotyped
populations, 89.7% (n = 35) showed population-genetic sig-
natures of clonality, whereas 10.3% (n = 4) showed an increase of
unique multilocus genotypes, indicative of genetic recombination
caused by sexual reproduction.

Asexual populations. A total of 1,647 individuals from 218 colonies
in 35 populations exhibited genetic signatures of clonal re-
production. Asexual reproduction was characterized by sharing of
repeated multilocus genotypes among individuals (Table S1),
maximum deviation from random mating (Fis = —1; Table S2),
and a low genotype-to-individual ratio (i.e., G:N approaching 0,
whereas a G:N of 1 indicates that each individual is genetically
distinct from another) (Table S1). To determine the number of
independently evolved asexual lineages that arose at different
localities from the sexual population, we estimated the probability
that slightly different multilocus genotypes originated from sep-
arate sexual events (psex > 0.01) instead of arising from accu-
mulated mutations or scoring errors (psex < 0.01). In addition,
clonal diversity (R) was calculated.

Among all M. smithii populations, 66 asexual genotypes were
identified, 57 of them representing unique multilocus genotypes
(R = 0.86; Tables S2 and S3). Five repeated multilocus genotypes
were shared between 10 geographically proximate populations
(~10-40 km distance), and three unique genotypes were identi-
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Fig. 1. Geographic distribution of sexual (stars) and asexual (circles)
M. smithii populations. Localities refer to the sexual populations, distributed
along the Rio Amazonas and the Rio Negro. Asexual populations are widely
distributed in Latin America, ranging from northern Mexico to northern
Argentina. Lines of longitude and latitude are separated by units of 5°.
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fied in seven geographically distant populations (~700-2,600 km
distance; Tables S2 and S3). Calculating the probability that re-
peated multilocus genotypes from different populations originated
from distinct sexual events revealed that identical multilocus gen-
otypes belong to the same clonal lineage (psex < 0.01), indicating
long-distance dispersal events of individuals from the same asexual
lineage. No genetic variation was present within repeated multi-
locus genotypes (Fis = —1), but significant genetic variance was
structured among them [analysis of molecular variance (AMOVA);
Fsr = 0.624, P = 0.01].

A comparison of the 57 unique multilocus genotypes revealed
high frequencies of low genetic distances between genotypes,
resulting in a bimodal frequency distribution of genetic distances
and indicating the potential existence of mutations or scoring
errors in clones (34). Eleven multilocus genotype pairs differed
from one other genotype only by a single allele, reducing the
number of asexual lineages that potentially originated from dis-
tinct sexual events to 46 (psex < 0.01, R = 0.69). Further lowering
the threshold and allowing two to six alleles to be shared among
multilocus genotypes within an independently evolved clonal
lineage, we identified 43 (R = 0.65) to minimally 38 (R = 0.57)
independently evolved clonal lineages.

In 20 clonal populations, only a single multilocus genotype was
encountered across different colonies. In 15 populations, two to
maximally six multilocus genotypes coexisted at a single site (Table
S1). In five populations, all or a subset of multilocus genotypes
differed by one to six alleles, suggesting a single colonization event
followed by diversification within clonal lineages due to the ac-
cumulation of mutations or scoring errors (Table S1). In contrast,
12 populations harbored multilocus genotypes differing by 7-15
alleles, indicating independent colonization events of these sites by
distantly related clonal foundress queens. The highest diversity of
clonal lineages (n = 5) was discovered at a Peruvian lowland
rainforest site (Los Amigos).

Genetic uniformity across all loci within colonies suggests either
mitotic parthenogenesis (apomixis) as the cytogenetic mechanism
underlying thelytokous parthenogenesis in M. smithii or, alterna-
tively, automixis with central fusion and low recombination rates.
To trace the genotypes of reproductive individuals over multiple
generations, we propagated M. smithii colonies in the laboratory for
six consecutive generations and genotyped all 93 queens at the end
of the experiment. All queens were genetically identical across
generations, and transitions from a heterozygous locus in the
mother to a homozygous locus in the offspring was not observed, as
would be expected under automixis with central fusion. In-
terestingly, in field-collected populations in which 7 of the 11 mul-
tilocus genotype pairs differ by only a single allele and are identical
at all other loci, we observed that one genotype was heterozygous at
a given locus whereas the other was homozygous at the same locus.
These transitions could indicate a switch from heterozygosity
to homozygosity, as expected under automixis. Without knowing
which one of these two is the maternal or the offspring genotype,
however, it is not possible to distinguish between a transition from
a heterozygous to a homozygous state caused by infrequent re-
combination or an accumulation of “somatic” mutations.
Recombining populations. Four Amazonian populations, distributed
along the Rio Amazonas and the Rio Negro (Fig. 1), exhibited
population-genetic signatures of genetic recombination, indicative
of sexual reproduction (Tables S1 and S2). Among 283 genotyped
individuals, 210 multilocus genotypes were identified, resulting in
high genotype-to-individual (G:N) ratios, ranging from 0.71 to 1
(Table S1). Recombinant populations were characterized by in-
breeding indices diverging from genetic fixation (Fig = -1),
ranging from 0.03 to —0.77, and observed and expected hetero-
zygosities were similar, as expected for populations under Hardy—
Weinberg conditions (Table S2).

Because multiple colonies were collected from the Caldeirdo
population in Amazonas, Brazil (Fig. 1), we investigated this
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population in detail to test for sexual reproduction. Genotyping
of 243 individuals (234 workers, 5 queens, 4 spermatheca con-
tents) revealed the existence of 173 unique multilocus genotypes,
of which 132 multilocus genotypes were represented by single
individuals whereas the remaining 41 multilocus genotypes were
shared by 111 individuals. Among the shared multilocus geno-
types, two or at most six nestmates carried identical genotypes.
After removing identical genotypes from the dataset, we tested
whether genotypes that differ by only a single allele are derived
from distinct sexual events or from somatic mutations or scoring
errors. Among those unique genotypes (n = 173), 55 multilocus
genotypes likely belonged to the same clonal lineage (psex < 0.01),
whereas 118 multilocus genotypes probably originated from dis-
tinct sexual events (psex > 0.01). This result indicates that 48.6%
(118 multilocus genotypes out of 243 individuals) of the geno-
typed individuals result from sexual reproduction. Such a mixture
of recombinant and clonal offspring within a single population
suggests that sexual M. smithii queens either occasionally re-
produce parthenogenetically or, alternatively, that a larger num-
ber of clonally reproducing queens coexists with sexual queens in
the same colony. Facultative asexual reproduction by otherwise
sexual queens seems more likely, however, given the high number
of shared genotypes in the Caldeirao population (n = 41), con-
trasting with the low number of individuals sharing a multilocus
genotype (n = 2-6). After excluding repeated genotypes, ob-
served and expected heterozygosities were almost identical (H, =
0.372, H. = 0.369) and the inbreeding index was indicative of
random mating (Fis = —0.009) (Table S2).

To directly test whether queens were fertilized, the abdomens
of four (out of five) queens were dissected, revealing sperm-filled
spermathecae and reproductively active ovaries. The spermatheca
contents (n = 4) were identified as sperm under 200x magnifi-
cation and subsequently genotyped. The sperm from each sper-
matheca were haploid at all loci, as expected from hymenopteran
males developing from unfertilized, haploid eggs. In addition,
haploidy at all loci indicates that the queens were singly mated.
Furthermore, a subset of paternal alleles matched alleles found in
workers which were not present in queens (Table S4). Hence,
workers exhibited recombinant genotypes representing both ma-
ternal and paternal alleles. The combined evidence demonstrates
that the M. smithii population from Caldeirao reproduces sexually
and, although males have as far as we know never been collected,
sperm content clearly reveals their existence.

The genetically recombinant population from Sao Gabriel da
Cachoeira showed that all nestmates (n = 8) were genetically
distinct (G:N = 1, H, = 0.365, H. = 0.315, Fis = —-0.172),
consistent with strict sexual reproduction (Tables S1 and S2).
However, in the Belém colony (G:N = 0.96, H, = 0.451, H, =
0.466, F1s = 0.034) and the Parintins colony (G:N = 0.71, H, =
0.650, H, = 0.398, Fis = —0.773), few individuals shared a mul-
tilocus genotype, suggesting mixed sexual and parthenogenetic
reproduction in these populations.

Only a single clonal lineage (from Trinidad) shared a multi-
locus genotype with the sexual population from Sao Gabriel da
Cachoeira, suggesting that sexual lineages may continuously
spawn asexual lineages. To further explore whether sexual pop-
ulations give rise to asexual lineages, we analyzed the genetic
structure of unique multilocus genotypes of asexual and sexual
populations. Genotypes of sexual populations group as distinct
genetic clusters in the 3D plot generated by a nonmetric multi-
dimensional scaling (NMDS) analysis (Fig. 2). In the discriminate
analysis of principal components (DAPC) analysis, the asexual
genotypes as a whole and the four clusters of sexual genotypes are
significantly different from each other [Wilks’s lambda = 0.098,
approximate F ratio = 80.247, df (12, 685), P < 0.0001]. Only
a few asexual genotypes grouped inside clusters of sexual geno-
types, indicating genetic proximity. Greater genetic distances
between clones and sexual clusters most likely indicate that the
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Fig. 2. Plot of 3D object coordinates resulting from an NMDS analysis de-
rived from individual genetic distances. Colored circles represent genotypes
of sexual M. smithii populations (blue, Belém; orange, Parintins; green,
Caldeirao; yellow, Sdo Gabriel da Cachoeira) and red triangles represent
genotypes of asexual lineages.

clones originated from sexual source populations other than the
four that were sampled, or perhaps that they are of older evo-
lutionary origin and thus highly diverged. Limited overlap be-
tween sexual clusters further indicates that the genetic variability
of sexual populations was not exhaustively sampled for M. smithii
as a species.

Phylogenetic Analyses. To test the monophyly of M. smithii and
reconstruct whether asexuality evolved once or multiple times
from a sexually reproducing ancestor, we conducted a global
phylogenetic analysis of the genus Mycocepurus and a local
analysis of only M. smithii taxa representing a sample from each
of the genotyped populations (Table S5).

In the global analyses, the monophyly of the genus Mycocepurus
was unequivocally supported [Fig. S1; Bayesian posterior proba-
bility (BPP) = 1; maximum likelihood bootstrap proportion
(MLBP) = 100], which is consistent with a previous analysis (35).
Within the genus Mycocepurus, nine reciprocally monophyletic,
highly supported groups were recognized [Fig. S1; BPP = 1,
MLBP > 92], supporting the existence of five new species (Fig.
S1). The monophyly of M. smithii was well-supported [Fig. S1;
BPP = 1, MLBP = 92], suggesting that extant M. smithii pop-
ulations derive from a single most recent common ancestor
(MRCA). An undescribed species from the Colombian Amazon
was found to be the sister lineage of M. smithii, but with only weak
statistical support (Fig. S1; BPP = (.72, MLBP = 56).

For the mitochondrial gene tree of genotyped M. smithii pop-
ulations, the statistical support for relationships between sampled
individuals is generally low, as expected from the relatively weak
phylogenetic informativeness of the mtDNA markers (Table S6;
parsimony-informative characters = 169; 11% of mtDNA data-
set). Despite this general problem, the monophyly of M. smithii as
a species was supported by both the mitochondrial and nuclear
data, suggesting that a hybrid origin of asexual reproduction is
unlikely in M. smithii. The mitochondrial phylogeny further in-
dicates that the sexual populations are separated into at least two
distantly related groups (Fig. 3) and that relationships among
asexual populations are in some cases correlated with geography.
Three sexual populations form a reasonably well supported clade
(BPP = 0.96, MLBP = 59) that also includes two clonal pop-
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ulations (Fig. 3). The sexual population from Belém forms the
sister lineage to a clade consisting of asexual populations from the
Amazon and Trinidad. This relationship, however, is only weakly
supported (BPP = 0.51). Neither the asexual nor the sexual
populations are reconstructed as monophyletic under any possi-
ble rooting (Fig. 3), consistent with the hypothesis of independent
evolutionary origins of asexuality. Based on Bayes factors (BF),
the likelihoods of phylogenies resulting from analyses in which
the asexual populations are constrained to be monophyletic are
significantly worse fitting to the data than those resulting from
unconstrained analyses [ML: 2In(BF) = 137.82; Bayesian: 2In
(BF) = 124.1], further indicating multiple independent origins
of asexuality.

Divergence-dating analysis. The stem-group age (i.e., earliest possi-
ble origin) of the fungus-gardening ants was estimated to be 52
million years (Ma) [confidence interval (CI) = 44,60] and the
crown-group age was 50 Ma (CI = 43,58), consistent with esti-
mates in Schultz and Brady (35). The estimated crown-group age
of the genus Mycocepurus is ~10 Ma (CI = 6,14), whereas the
stem-group age is considerably older with 37 Ma (CI = 27,46),
which is also indicated by a long branch leading to the MRCA
shared with the sister lineage Myrmicocrypta (Fig. S1). The stem-
group age of Mycocepurus smithii is ~1.65 Ma (CI = 0.57,2.84),
whereas the crown-group origin was estimated to be considerably
more recent at 0.5 Ma ago (CI = 0.01,1.19). This relatively recent
estimate for the evolutionary origin of M. smithii is consistent with
the almost complete absence of genetic variability observed in the
nuclear DNA sequences.

Discussion

M. smithii consists of a mosaic of sexual and parthenogenetic
populations. Although separated by as much as 2,000 km, the
sexual populations are located along the Rio Amazonas and the
Rio Negro, suggesting the existence of a central widespread sexual
(or facultatively sexual/asexual) population that has repeatedly
generated asexual, clonally reproducing lineages. These asexual
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Fig. 3. Midpoint-rooted Bayesian phylogram of M. smithii individuals rep-
resenting each of the genotyped populations based on analyses of three
mitochondrial gene fragments. Bayesian posterior probabilities (x100) and
ML bootstrap proportions are indicated as BPP/MLBP. Red branches and bold
font indicate taxa from sexually reproducing populations. All other taxa
represent asexual populations. (Scale bar, number of substitutions per site.)
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lineages have rapidly dispersed throughout much of Latin Amer-
ica, leading to the current widespread geographic distribution of
the species (32, 33). The high clonal diversity in some populations
indicates that independently evolved clonal lineages have colo-
nized these habitats separately and repeatedly through time. Once
an M. smithii lineage has lost the ability to reproduce sexually, the
condition seems irreversible, resulting in our finding of genetically
identical individuals in each of the 218 parthenogenetic colonies
studied. The mitochondrial phylogeny of M. smithii (Fig. 3)
identifies a statistically well-supported group that includes indi-
viduals from both asexual and sexual populations, and places the
sexual populations in at least two distantly related clades. These
patterns, coupled with the results of phylogenetic constraint
analyses, are consistent with independent and repeated losses of
sexual reproduction. Given the limitations of our sampling, it is
nearly certain that additional sexual source populations, from
which such closely related groups of asexual clones originated,
were not sampled. The divergence-dating analysis provides a re-
cent estimate (crown-group age: 0.5 Ma; CI = 0.01,1.19) for the
origin of the presumably sexual most recent common ancestor of
extant M. smithii populations, indicating that secondary transitions
from sexual to asexual reproduction have occurred recently and
possibly continue to occur in the present.

The combined phylogenetic and population-genetic evidence is
consistent with the hypothesis that sexual reproduction was lost in
ancestors of parthenogenetic M. smithii populations. The sponta-
neous loss of sexual reproduction has been proposed for the little
fire ant Wasmannia auropunctata, in which sexual populations in
the native range of this invasive species are likely the source of
asexual invasive populations (36). The proximate genetic mecha-
nisms causing the loss of sexuality are not well-understood. How-
ever, studies of Cape honey bees (37) and of parthenogenetic
lineages of Drosophila melanogaster (38) show that a single re-
cessive allele can cause thelytoky. These examples suggest that the
high propensity for switching from sexual to asexual reproduction
in M. smithii may be controlled by a small number of genes.
Breeding experiments could test whether thelytoky is a qualitative
or a quantitative trait in M. smithii by introgressing sexual genes
into an asexual genetic background and observing the segregation
pattern of the offspring.

Cyclical parthenogenesis, the alteration of asexual and sexual
life stages (39, 40), is unlikely to occur in M. smithii. In each of the
218 parthenogenetic colonies collected in different seasons over
an 8-y period (2003-2010), nestmates belonged only to one or
very few clonal lineages. The nonrandom geographic distribution
of sexual and asexual populations likewise suggests that the switch
from sexuality to asexuality is unlikely triggered by season.

In arthropods, the evolution of asexuality is often associated
with hybridization (30, 41), a mechanism so far unknown in so-
cial Hymenoptera (36). Given the monophyly of M. smithii and
the phylogenetic congruence between nuclear and mitochondrial
markers, hybridization is also unlikely to explain the origin of
asexuality in M. smithii.

Alternatively, microorganisms such as Wolbachia, Cardinium,
and Rickettsia have been shown to induce parthenogenesis in
parasitoid wasps (42-44). Even though Wolbachia infections
have not been detected in social Hymenoptera (45), including
M. smithii (16), other parthenogenesis-inducing symbionts can-
not be ruled out in M. smithii.

Although we have so far only examined a scenario in which
asexual populations of M. smithii have repeatedly arisen from
sexual populations, the nonmonophyly of the sexual and asexual
populations in the mitochondrial phylogeny equally supports an
alternative hypothesis: that sexual populations have repeatedly
evolved from widespread asexual populations. Although evolu-
tionary reversals from less complex to more complex ancestral
traits have long been deemed unlikely (46, 47), reversals from
asexual to sexual reproduction have been suggested for mites and
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hawkweed (48, 49). The absence of males (17) and the lack of
genetic recombination in asexual populations of M. smithii are
consistent with the hypothesis that meiosis is dysfunctional in
parthenogenetic queens. In species with haplodiploid sex de-
termination, restoring functional meiosis would simultaneously
result in recombination and the production of haploid eggs, from
which males could develop (41, 50). Therefore, haplodiploid
species might theoretically require only a single mutation to
reevolve sexuality. However, given (i) that all Mycocepurus species
for which we have biological information reproduce sexually, (ii)
the high genetic diversity observed in the sexually reproducing
M. smithii populations, and (iii) the genetic variability observed
between separate clonal lineages, it seems highly unlikely that
extant sexual M. smithii individuals descended from asexual ancestors.
Despite the large number of clonal lineages found across the
broad geographic distribution of M. smithii, mothers and offspring
from field and laboratory colonies were genetically identical
across multiple generations and males were completely absent
from asexual populations, suggesting apomixis as the cytogenetic
mechanism underlying thelytoky. Alternatively, it is possible that
M. smithii queens reproduce via meiotic parthenogenesis (auto-
mixis) with central fusion, a cytogenetic mechanism characterized
by potentially very low recombination rates, depending on the
locus’s distance to the centromere, as indicated by genotype pairs
that differ only at a single locus. Automixis with central fusion has
been documented in social Hymenoptera (18, 19, 26, 28, 29, 51,
52), and a recent study of W. auropunctata reported recombination
rates as low as 0-2.8% (31). Our current data, however, are in-
sufficient to clearly distinguish between automixis with a low re-
combination rate and apomixis with rare gene conversion.

Conclusion

M. smithii is a recently evolved, monophyletic species consisting of
a mosaic of asexual and sexually reproducing populations. Sex has
been lost repeatedly in multiple lineages. Once females have lost
the ability to reproduce sexually, the condition seems to be irre-
versible. The lack of genetic recombination and the complete
absence of males in asexual populations and laboratory breeding
experiments indicate that meiosis may be dysfunctional in asexual
females, and thus that mitotic parthenogenesis (apomixis) is the
cytogenetic mechanism underlying parthenogenesis in M. smithii.
However, automixis with central fusion and low recombination
rates cannot be ruled out as a possible alternative mechanism.
Sexually reproducing populations were discovered in the center of
M. smithii’s geographic distribution along the Rio Amazonas and
the Rio Negro. M. smithii has high local population densities and
the most extensive geographic distribution of any fungus-growing
ant species, indicating its ecological success. The sympatric exis-
tence of sexual and asexual populations in the Amazon suggests
that sexual populations continue to enjoy high fitness in the center
of the species distribution and are not outcompeted by asexual
colonies. The fitness advantage of asexual populations seems to be
realized outside the range of sexual populations, where parthe-
nogenetic queens apparently colonize vacant niches and disperse
rapidly in the absence of males. Given that kin selection theory
predicts that conflict over reproduction should be absent in groups
of genetically identical individuals, it would be intriguing to in-
vestigate the maintenance of cooperative behavior and social con-
flict in M. smithii. Finally, given the absence of genetic variation
within colonies and the presence of phenotypically distinct queen
and worker castes, M. smithii appears to be a study organism that is
well-suited for investigating the proximate mechanisms of envi-
ronmentally based caste determination and for exploring the ge-
netic basis of phenotypic plasticity.
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Materials and Methods

Population-Genetic Analyses. As test statistics for asexuality, we used the
existence of repeated multilocus genotypes and maximum deviation from
random mating (Fis) (53-55). The genotype-to-individual ratio (G:N ratio)
was applied to identify multilocus genotypes (55) (Table S1). Independently
evolved asexual lineages (clones) originating from separate sexual events
were distinguished from slightly different multilocus genotypes that di-
versified through accumulation of mutations or scoring errors by calculating
the probability, psex, following the methodology outlined in ref. 34 and
implemented in GENCLONE 2.0 (56). The observed and expected heterozy-
gosity for each clonal lineage (57), the proportion of clonal genotypes in
a population, F statistics, and AMOVA were calculated in GENALEX 6 (58)
and Genetic Data Analysis (59). To reveal the underlying population-genetic
structure of sexual and asexual populations, we used the multivariate sta-
tistical methods (60-62) NMDS, principal component analysis, and DAPC, as
implemented in PERMAP (63), GENALEX (58), and SYSTAT (Systat Software).

Phylogenetic Analyses. \We conducted analyses of two distinct datasets: first,
a global dataset that included 84 M. ingroup taxa, 32 of them M. smithii, and
87 outgroup taxa. The recently described social parasite M. castrator (64)
was not included. The alignment consisted of 2,319 bp of protein-coding
(exon) sequences of three single-copy nuclear genes and one mitochondrial
gene and was divided into 10 partitions. Second, we conducted a local
analysis of 41 M. smithii taxa representing one individual from each of the
genotyped populations (Table S5). We obtained 1,515 bp of three mito-
chondrial genes and divided the alignment into two partitions (Table S6).
Constrained topologies were estimated using Bayesian and ML analyses, and
differences in the likelihoods of constrained versus unconstrained topologies
were evaluated using Bayes factors (65-67). All ingroup sequence data were
generated for this study (Table S5). Best-fit models of sequence evolution
were selected for each partition under the Akaike information criterion (68)
and hierarchical likelihood ratio tests as calculated in MODELTEST v3.7 (69)
(Table S6). We conducted partitioned Bayesian analyses using MrBayes
v3.1.2 (70). Burn-in and convergence were assessed using Tracer v1.5 (71).
Partitioned ML analyses were carried out in GARLI 0.97.r737 (72).

Divergence-Dating Analysis. We used a Bayesian relaxed clock uncorrelated
lognormal approach implemented in the program BEAST v1.4.8 with a Yule
process as the tree prior (73-75). The root node was given a normal age prior
distribution (mean = 73.5, SD = 4.5), following methodology described in ref.
76. Based on fossil data, lognormal age prior distributions were assigned to
three internal nodes, as outlined in ref. 35. For more details on analyses and
results, see S/ Materials and Methods and Tables S1-S8.
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Population-Genetic Analyses. Population sampling. The known dis-
tribution range of Mycocepurus smithii includes Latin America
from northern Mexico to northern Argentina and many Carib-
bean islands (1-6). To test for asexuality in M. smithii, we sampled
populations throughout the geographic range between 2003 and
2010 (Table S1). Previous studies demonstrated that M. smithii
colonies could be either mono- or polygynous, meaning that a
single colony could include either a single or multiple repro-
ductively active queens (7-9). Preliminary genotyping of sampled
individuals revealed that in some populations more than a single
multilocus genotype was present; however, queen and offspring
genotypes were genetically identical. Hence, our working hy-
pothesis was that M. smithii queens produce workers and queens
clonally, either via apomixis or automixis. We attempted to
sample entire colonies of M. smithii through careful nest ex-
cavations, including whenever possible workers, brood, and a re-
productively active queen(s). In addition to nest excavations,
workers were collected from nest entrances. Scooping up nest
entrances with a knife proved to be an efficient way to collect
workers because foragers accumulate in a tiny circular chamber
below the entrance (7, 10).

Microsatellite development. To characterize M. smithii colonies and
populations genetically, we developed 12 highly variable short
tandem repeat markers (microsatellites). For microsatellite de-
velopment, genomic DNA was extracted from ~100 M. smithii
workers collected from a single population in Rio Claro, Brazil,
with a QIAamp DNA Micro Kit (QIAGEN) to obtain ~100 pg
DNA. Genetic Identification Services enriched microsatellite li-
braries for four different motifs in parallel: CA, GA, AAC, and
ATG. Pooled genomic DNA was partially restricted with the
enzymes Rsal, Haelll, BsrB1, Pvull, Stul, Scal, and EcoRV.
Size-selected fragments (300-750 bp) were linked to adapters
containing a HindIII restriction site and then captured with
magnetic beads. Fragments were ligated into the HindIII site of
the plasmid pUC19. Plasmids were propagated in Escherichia coli
DH5a and stored in 20% glycerol at —80 °C. Cells from the
glycerol stock were spread on X-gal/isopropyl-p-D-thiogalactoside/
ampicillin plates, picked after incubation, and heated to 100 °C
for 10 min in 10 pL PCR Master Mix (1x PCR buffer, 30 nmol
MgCl,, 3 nmol each dNTP, 15 pmol M-13 cloning-site primers).
Five microliters of polymerase solution (0.075 pL, 5 U Taq DNA
polymerase, 0.5 pL 10x PCR buffer, 4.425 pL ddsH,O) were
added to amplify the insert using a PTC-200 Cycler (MJ Research)
(94 °C for 3 min; 35 cycles of 94 °C for 40 s, 55 °C for 40 s, 72 °C
for 30s; 72 °Cfor 4 min). Overall, 100 PCR products (25 for each of
the CA, GA, AAC, and ATG libraries) were sequenced on
an Applied Biosystems 3100 Genetic Analyzer using BigDye
Terminator chemistry.

Twelve loci were chosen to represent a variety of variable repeat
motifs, variable product sizes, and similar annealing temperatures,
and were combined in four multiplex polymerase chain reactions
(Table S7). Specific primers were designed with an optimal an-
nealing temperature (Ty,) of 56-58 °C, a GC content of ~50%,
and at least one GC clamp using the Primer3 web site (11).
Genotyping. DNA of single workers, queens, and spermatheca
contents was extracted using a 10% Chelex solution (Sigma-
Aldrich). Spermatheca contents were extracted following the
methodology outlined in Rabeling et al. (8). One microliter of
DNA extract was used per 10 pL PCR and amplified using the
following conditions: 95 °C for 5 min; 35 cycles of 94 °C for 30 s,
55°Cfor 90s, 72 °C for 60 s; 72 °C for 10 min. Using the multiplex
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PCR, we examined allelic variation within each locus by geno-
typing 1,930 M. smithii samples, yielding a total of 106 alleles
across the 12 loci (range = 2-15 alleles per locus; Table S7). The
number of alleles per locus per individual never exceeded two,
indicating that M. smithii females are diploid. Representatives of
each multilocus genotype were genotyped twice, using the same
DNA extract, and scored blindly to minimize the possibility of
erroneously assigning incorrect genotypes to the individuals.

For fragment analysis, 1 pL. of PCR product was mixed with 8

pL of HiDi (Applied Biosystems) and 1.5 pL of cheaply ampli-
fied size standards using the following primer/ladder sizes: ROX
F1, ROX 104, ROX 150, ROX 200, ROX 253, ROX 305, and
ROX 424 (12). PCR products were analyzed on an Applied
Biosystems 3100 Genetic Analyzer and alleles were scored using
GeneScan v3.5 (Applied Biosystems) and GeneMarker v1.5
(SoftGenetics).
Statistical analyses. The goals of the population-genetic analyses
were to determine (i) whether M. smithii is obligately or facul-
tatively asexual, (if) the cytogenetic mechanism underlying par-
thenogenesis in reproductive females, and (iii) the genetic struc-
ture and diversity within and among asexual and sexual colonies
and populations. According to preliminary analyses performed on
laboratory and field colonies, our hypothesis was that workers and
queens of a single colony exhibited repeated multilocus genotypes
(MLGs). The genotype-to-individual ratio (G:N ratio) is a simple
measure for identifying clonality, with ratios ranging from 0 to 1
(13). A value close to 0 is characteristic of a strictly clonal colony/
population in which all individuals share the same genotype,
whereas a value of 1 is characteristic of a population in which all
individuals have distinct genotypes, as expected under sexual re-
production and genetic recombination (Table S1). Because ants
are social insects and live in colonies, we devised a second, colony-
level measure of asexuality: the genotype-to-colony (G:C) ratio
(the number of genotypes observed divided by the number of
colonies screened). A value of 1 indicates that a single multilocus
genotype was identified in each colony and all colonies were dif-
ferent from each other, as expected under clonal reproduction by
a single queen; values between 0 and 1 indicate some sharing of
genotypes between different colonies; and values greater than 1
indicate increased genetic diversity within colonies, suggesting
either the presence of multiple genetically distinct reproductives in
a colony or genetic recombination (Table S1).

Scoring repeated multilocus genotypes of multiple colonies per
population revealed that MLGs could differ by only a single allele.
These minor differences could either be due to “somatic” muta-
tions or to scoring errors or, alternatively, slightly different MLGs
could represent independent asexual lineages that originated
separately from a sexually reproducing ancestral population (14)
(Table S3). We therefore distinguished between slightly different
MLGs belonging to the same asexual lineage, or clone, and
slightly different MLGs that belong to the same clone and arose
via mutations or scoring errors (13, 14). First, as recommended in
Arnaud-Haond et al. (14), we identified MLG pairs in asexual
populations with very low genetic distances, as indicated by
a small peak in the frequency distribution of genetic distances.
Then we calculated pge, (equation 3 in ref. 14) using the software
GENCLONE 2.0 (15) to estimate the probability that identical
multilocus genotypes arose from independent sexual events or
that they belonged to the same clone. If the probability was lower
than the implemented threshold value (¢« = 0.01), then identical
MLGs were regarded as belonging to the same asexual lineage or
clone. In our analysis, we first excluded all identical MLGs, re-
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sulting in a total of 57 unique MLGs. Of those 57 MLGs, 11 MLG
pairs differed by only a single allele, reducing the number of in-
dependently derived asexual lineages to 46. Increasing the allele
difference between MLG pairs to 2, 3, 4, 5, and 6 alleles further
reduced the number of independently originated clones to 43, 41,
40, 39, and 38 clones, respectively.

Interestingly, seven MLG pairs, all of which came from colonies
collected in the same population, differed only at a single locus in
which one lineage was homozygous for a given locus and the other
lineage was heterozygous (Table S3; Panchan B and C, Copan A
and B, Remate A and B and Tikal A, Ocumare B and D,
Ocumare B and C, Amigos A and C, Cuevas C and Simla B and
C). Currently, we cannot distinguish whether this difference
represents a transition from heterozygosity to homozygosity,
which would be expected under automixis with central fusion and
low recombination rates (16, 17), or whether it represents a case
of gene conversion in an apomictic lineage.

We also measured the inbreeding coefficient of M. smithii
colonies/populations, describing the maximum deviation from
random mating and calculated as Fig = H[bar]. — H[bar],/H
[bar]. (13, 14, 18, 19), using the software package Genetic Data
Analysis (GDA) (20). Observed heterozygosity (H, = number of
heterozygosities/N) and expected heterozygosity [H, = 1 — Zp;’]
were calculated using the software GENALEX 6 (21). F statistics
and heterozygosities were calculated for each MLG and for each
recombinant population separately. To avoid resampling of
identical MLGs in recombinant populations, we included only a
single representative of each genotype. The analysis of molecular
variance was calculated with GENALEX 6 (21). Clonal diversity
was calculated as R = (G — 1)/(N — 1), with G representing the
number of asexual lineages, or clones, and N representing the
number of sampled multilocus genotypes (14).

To reveal the underlying population-genetic structure of sexual
and asexual populations, we used a number of multivariate statistical
methods (22, 23). Nonmetric multidimensional scaling (NMDS)
analyses were used to identify the presence of genetic clusters. In
GDA (20), we transformed the genetic variability described by the
microsatellite data into a matrix of pairwise Nei’s 1972 standard
genetic distances (20, 24). The distance matrix was then used to
identify clusters that best describe the observed genetic variability
in a few dimensions (22, 25-27) using the software PERMAP 11.6
(28). To find a global minimum mapping solution, we used non-
metric ratio and error bounds with a 5% error bound, set the
convergence rate control to small step size, and set the convergence
limit control to high precision. The analysis was carried out for
three dimensions. The 3D distribution of object coordinates was
visualized with the software SYSTAT (Systat Software). To de-
termine whether visually identified genetic clusters were signifi-
cantly different from one another, we used a discriminate analysis
of principal components (DAPC) (23) using SYSTAT. In addition,
a principal component analysis (PCA) was used to cluster geno-
types by genetic similarity, which was 77.55% for the first three
principal components (first PC: 45.57%; second PC: 19.48%; third
PC: 12.5%).

Breeding experiment. To provide experimental evidence for the
cytogenetic mechanism underlying parthenogenetic reproduction,
we conducted a laboratory breeding experiment. Six generations
of reproductively active queens (n = 93) collected in 2001 in
Gamboa, Panama, were raised in laboratory nests over a period of
~1y (see ref. 29 for a description of the nest setup). Initially, we
selected 30 alate virgin queens (five individuals from six colonies)
for the breeding experiment. The queens’ wings were removed,
a procedure known to stimulate reproductive behavior. Each
queen was provided with a piece of fungus garden, which was
carefully screened to exclude existing eggs and larvae, and 10
sterile workers were added to each colony. As soon as the ex-
perimental colonies started producing sexual offspring (i.e., the
next generation of virgin queens), those new gynes were separated
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to initiate the next generation of experimental colonies. After
raising six generations of reproductive females from multiple
maternal lineages, we genotyped all reproductive and alate queens
using the microsatellites described above. All 93 individuals were
genetically identical, representing the multilocus genotype Gam-
boa A (Tables S1, S2, and S3). Transitions from hetero- to ho-
mozygosity were not identified at any locus. Even though workers
in laboratory and field colonies were never found to have func-
tional ovaries (8), we dissected a subset of workers from the ex-
perimental colonies to determine whether workers contribute to
colony reproduction. No worker reproduction was detected.

Phylogenetic Analyses. Taxon sampling. To test the monophyly of
M. smithii and to infer intraspecific relationships between asexual
and sexual populations, we conducted phylogenetic analyses of
two distinct datasets. First, we analyzed a global dataset that
included 84 Mycocepurus ingroup taxa, 32 of them M. smithii
(Table S5), and 61 non-Mycocepurus attines, plus 26 nonattine
myrmicine outgroups. The recently described social parasite
M. castrator (30) was not included in this analysis. Second, we
conducted a local ingroup-only analysis including 41 M. smithii
taxa representing one individual from each of the genotyped
populations (Table S5).

DNA sequencing. Given the small size of Mycocepurus workers,
DNA was extracted from entire single specimens. For queens,
only the mesosomas were extracted, using a QIAamp DNA Micro
Kit (QIAGEN), diluting the extracted DNA in 40 pL ddH,O. For
the global dataset, we analyzed an alignment including a total
of 2,319 bp, consisting of fragments from three single-copy nu-
clear genes—Elongation Factor 1-a F1 copy (EF1-o; 1,071 bp),
Wingless (Wg; 405 bp), and Long Wavelength Rhodopsin (LW
Rh; 456 bp)—and one mitochondrial gene—Cytochrome Oxi-
dase I (COL 387 bp). All data represent protein-coding (exon)
sequences; introns of EF1-a, Wg, and LW Rh were excluded
from the phylogenetic analysis because they could not be aligned
confidently across ingroup and outgroup taxa. All ingroup se-
quence data were generated for this study; they do not contain
missing fragments, except for the LW Rh sequence of M. goeldii
278, and were deposited in GenBank (Table S5). The outgroup
sequences were acquired from published information (31) and
lacked DNA sequence information for COI The global align-
ment (including all in- and outgroup taxa) included 909 variable
nucleotide positions of which 860 were parsimony-informative
(Table S6).

For the local, M. smithii-only alignment, we obtained 1,515 bp
of the 3’ section of the mitochondrial COI gene (1,173 bp), the
t-RNA leucine region (t-RNA Leu; 72 bp), and the 5’ section of
the Cytochrome Oxidase II gene (COII; 270 bp). The non-
transcribed intergenic spacer, present in some other Attini (32),
consists of the triplet TTA in M. smithii. All sequence data were
translated into amino acid sequences to test for the presence of
mitochondrial pseudogenes (“numts”), which have been reported
in some Attini (33). The alignment contained 248 informative
sites of which 169 were parsimony-informative (Table S6). Pri-
mers were modified from several sources and specifically de-
signed for this study (Table S8). DNA sequences were aligned
manually in MacClade v4.08 (34). The mitochondrial phylogram
was studied both as an unrooted network and as a midpoint-
rooted tree because a long branch separates the ingroup from the
sister species of M. smithii, rendering the correct rooting of the
M. smithii mitochondrial tree a difficult problem.

Data partitioning. Based on genes and on the variability of codon-
position sites within each gene, following the recommended
methodology outlined in Ward et al. (35), we partitioned the
global dataset into 10 partitions: (i) first and second codon po-
sition of EF1-a, (ii) third position of EF1-a; (iii—v) first, second,
and third positions of Wg; (vi-viii) first, second, and third posi-
tions of LW Rh; (ix) first and second position of COI, and (x) third
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position of COI (Table S6). Best-fit models of sequence evolution
were selected for each partition under the Akaike information
criterion (AIC) (36) and hierarchical likelihood ratio tests
(hLRTs) as calculated in MODELTEST v3.7 (37) (Table S6).
When different models of sequence evolution were chosen by
AIC and hLRT, the more complex model was implemented.

The local, M. smithii-only alignment was divided into two

partitions. The first partition included the first and second po-
sitions of COI and COII and the tRNA leucine region; the
second partition included the third positions of COI and COIIL
(Table S6).
Bayesian phylogenetic inference. We conducted partitioned Bayesian
analyses using MrBayes v3.1.2 (38) with nucmodel = 4by4 and
samplefreq = 500. All parameters, including branch-length rate
multipliers, were unlinked across partitions except branch
lengths and topology. All analyses were carried out using parallel
processing (one chain per central processing unit) with eight
chains per run and two runs per analysis (nruns = 2).

To address known problems with branch-length estimation in
MrBayes (for example, 35, 39-42), we reduced the branch-length
priors. In the global analyses, we used brlenspr = unconstrained:
Exp(133.6081222) based on the procedure suggested in Brown et al.
(39); in the local analyses, we set brlenspr = unconstrained:Exp
(100). For the global analyses, moderately informative Dirichlet
priors were specified for branch-length rate multipliers to reflect
differences in evolutionary rates between first and second codon
positions versus third codon position and between nuclear and
mitochondrial genes. In local analyses, which used only two parti-
tions, we set prset ratepr = variable. In both sets of analyses, we used
the props command to increase the proposal rate from 1,000 to
10,000 and to decrease the Dirichlet alpha parameter from 500 to
250 for the rate multipliers (proposal mechanism 26 in MrBayes).

Burn-in and convergence were assessed using Tracer v1.5 (43)
by examining potential scale reduction factor values in the
MrBayes.stat output files, and by using Bayes factor comparisons
of marginal likelihoods of pairs of runs in Tracer, which employs
the weighted likelihood bootstrap estimator of Newton and
Raftery (44) as modified by Suchard et al. (45), with SE esti-
mated using 1,000 bootstrap pseudoreplicates.

Maximum likelihood analyses. Partitioned maximum likelihood (ML)
analyses were carried out in GARLI 0.97.r737 (46) using parallel
processing.

ML bootstrap analyses: For the global dataset, ML bootstrap
analyses consisted of 1,000 pseudoreplicates; for the local dataset
1,500 pseudoreplicates, both deviating from default settings as
follows: genthreshfortopoterm = 5000; scorethreshforterm = 0.10;
startoptprec = 0.5; minoptprec = 0.01; numberofprecreductions =
1; treerejectionthreshold = 20.0; topoweight = 0.01; brlenweight =
0.002.

ML “best-tree” analyses: For both the global and local data-
sets, ML best-tree analyses consisted of 100 searches, deviating
from the default settings as follows: topoweight = 0.01; brlen-
weight = 0.002. The best tree for the global analysis had a score
of InL = —22,005.643; for the local analysis, InL = —5,141.168.

In all analyses, the value for modweight was calculated as
0.0005x (number of subsets + 1) (46).

Constraint analyses. To test for single versus multiple independent
origins of asexuality, sexual and asexual populations were topo-
logically constrained to occupy the opposite sides of a single
branch in constrained ML and Bayesian analyses of the ingroup-
only mitochondrial data. The marginal likelihoods of the resulting
phylogenies were compared with those obtained in unconstrained
analyses using Bayes factors (47-50). Bayes factors (BF) were
calculated as the ratio of marginal likelihoods from constrained
versus unconstrained analyses (i.e., the differences in —InL) to
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produce the test statistic 2In(BF). In the case of the ML analysis
comparison, the marginal likelihoods used were point estimates
from best-tree analyses as described above; for Bayesian analy-
ses, they were post-burn-in harmonic means of the sampled
likelihoods (48, 49, 51) estimated in Tracer v1.5 (43), which
employs the weighted likelihood bootstrap estimator of Newton
and Raftery (44) as modified by Suchard et al. (45), with SE
estimated using 1,000 bootstrap pseudoreplicates. Within the
Bayesian statistical framework (47), the resulting test statistics,
137.82 (ML) and 124.1 (Bayesian), indicate that the constrained
topologies are significantly worse fitting to the data than the
unconstrained topologies, thus providing additional support to
a hypothesis of multiple origins of asexuality in M. smithii.
Divergence-dating analysis. We used a Bayesian relaxed clock un-
correlated lognormal approach implemented in the program
BEAST v1.4.8 with a Yule process as the tree prior (52-54). As the
model of sequence evolution, we used GTR+I+I" with three
partitions (codons 1, 2, and 3). To provide identical gene sam-
pling for in- and outgroup taxa, the mitochondrial DNA sequence
data were excluded from the divergence-dating analysis and only
the nuclear DNA data were retained. Substitution model, rate
heterogeneity, and base frequencies were unlinked across codon
positions. The root node was assigned to the so-called core
myrmicines, a well-supported clade identified in Brady et al. (55),
and three taxa, one Hylomyrma (note: Hylomyrma was errone-
ously named Pogonomymex in ref. 31) and two Myrmica species,
were used to root the tree. According to the estimates obtained
by Brady et al. (55), the root node was given a normal age prior
distribution (mean = 73.5, SD = 4.5). Lognormal age prior dis-
tributions were assigned to three internal nodes, the Apterostigma
pilosum-complex stem group (mean = 2.7, SD = 0.3, zero offset
15.0), the Cyphomyrmex rimosus stem group (mean = 2.2, SD =
0.5, zero offset 15.0), and the Trachymyrmex stem group (mean =
1.5, SD = 0.5, zero offset 15.0), taking into account fungus-
growing ant fossils and following the methodology outlined in
Schultz and Brady (31). Two fossils, Trachymyrmex primaevus
and a putative leafcutter ant fossil depicted in Grimaldi and
Engel (56), were not included in our analysis because the place-
ment of these fossils within the tribe Attini is uncertain (31).
Markov chain Monte Carlo runs were run for 10 million gen-
erations, and the first 1 million generations were discarded as
burn-in. Searches achieved sufficient mixing, as indicated by high
effective sample size values for all parameters, by plateaus in
divergence time estimates over generations after burn-in, and by
repeatability of results over 10 independent runs. The results
from all independent runs were combined in Tracer v1.5 and
reported as mean values + 95% upper and lower boundaries (43).

To use consistent in- and outgroup taxon sampling and to
prevent estimating disproportionally old root nodes for the
ingroup clades, only a single representative of each Mycocepurus
species was used during the divergence-dating analysis, except for
M. smithii, for which two genetically divergent individuals were
included to estimate the crown-group age (i.e., most recent pos-
sible origin) for the species. In addition, to test whether the mi-
tochondrial sequence data (present for the Mycocepurus ingroup
but not for the outgroup taxa) had an effect on the outcome of the
divergence-dating analyses, 10 parallel runs were executed, in-
cluding and excluding COI sequences. The divergence estimates
of the root node and internal nodes were significantly older for
the dataset including mitochondrial sequence data. Hence, the
mitochondrial data were discarded for our final divergence-dating
analysis, and only the sequence information for single-copy nu-
clear genes was retained, providing identical gene sampling for in-
and outgroup taxa.
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Fig. S1. Phylogram of the fungus-growing ant genus Mycocepurus generated by a Bayesian analysis of three nuclear protein-coding genes and one mito-
chondrial gene. Bayesian posterior probabilities (x100) (BPP) and ML bootstrap proportions (MLBP) are indicated as BPP/MLBP; values of BPP = 100 or MLBP =
100 are indicated by an asterisk. Relationships between 87 outgroup taxa are collapsed to better depict relationships among Mycocepurus species. (Scale bar,
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Table S1. Mycocepurus smithii populations sampled across Latin America
Number Genotype: Genotype:
Number of  Number Number  of unique  Number colony individual

Country State Locality/population individuals of queens of workers genotypes of colonies ratio ratio
Argentina  Chaco Pampa del Indio 5 0 5 1 1 1 0.2
Argentina  Misiones Iguazl National Park 22 0 22 1 3 0.33 0.05
Brazil Amazonas Caldeirdo 243* 5 234 173 11 15.72 0.71
Brazil Amazonas Manaus 263 13 250 3 36 0.08 0.01
Brazil Amazonas Parintins 7 0 7 5 1 5 0.71
Brazil Amazonas Reserva Ducke 8 0 8 1 1 1 0.13
Brazil Amazonas Santa Rita 15 0 15 1 3 0.33 0.07
Brazil Amazonas Sao Gabriel da 8 0 8 8 1 8 1

Cachoeira
Brazil Para Alter do Chao 9 0 9 1 1 1 0.1
Brazil Para Belém 25 0 25 24 3 8 0.96
Brazil Para Belterra 22 0 22 2 4 0.5 0.09
Brazil Sdo Paulo Rio Claro 390 138" 252 2 59 0.03 0.01
Costa Rica Limoén Cahuita 11 0 11 1 1 1 0.09
Costa Rica  Guanacaste Lomas Barbudal 25 0 25 2 5 0.4 0.08
Costa Rica  Limon Limoén 28 10* 18 1 2 0.5 0.04
Cuba Cienfuegos 20 0 20 1 2 0.5 0.05
Guatemala Peten El Remate 45 0 45 2 9 0.22 0.04
Guatemala Peten Tikal 15 0 15 1 3 0.33 0.07
Guyana Potaro- Paramakatoi 24 0 24 1 3 0.33 0.04

Siparuni

Honduras  Copan Copan Archeological 15 0 15 1 3 0.33 0.07

Museum
Honduras  Copan Copan Ruinas 30 0 30 3 6 0.5 0.1
Mexico Chiapas El Panchan 30 0 30 4 6 0.67 0.13
Mexico Chiapas Palenque 10 0 10 2 2 1 0.2
Mexico Nuevo Leén Monterrey 50 0 50 1 6 0.17 0.02
Mexico Tamaulipas El Encino 35 0 35 1 5 0.2 0.03
Nicaragua Matagalpa El Tuma 25 0 25 1 5 0.2 0.04
Panama Bocas del Toro  Bocas del Toro 33 0 33 1 4 0.25 0.03
Panama Colon Ft. Sherman 35 0 35 3 4 0.75 0.09
Panama Colon Gamboa (breeding 93 938 0 1 2 0.5 0.01

experiment)
Panama Colon Gamboa 20 0 20 2 1 2 0.1
Peru Cusco Huacaria 40 0 40 1 4 0.25 0.03
Peru Cusco Pilcopata 5 0 5 1 1 1 0.2
Peru Loreto Explorama Lodge, Iquitos 47 2 45 1 4 0.25 0.02
Peru Madre de Dios  CICRA, Los Amigos 149 10 139 6 15 0.4 0.04
Trinidad Las Cuevas 20 0 20 3 2 1.5 0.15
Trinidad Arena Dam 20 0 20 1 2 0.5 0.05
Trinidad Pierreville 20 0 20 1 1 1 0.05
Trinidad Simla Research Station 18 1 17 3 2 1.5 0.17
Venezuela Aragua Ocumare de la Costa 40 0 40 5 8 0.63 0.13
Venezuela Aragua Rio Cumboto 10 0 10 3 2 1.5 0.3
Total 39 localities 1,930 272 1,654 276 234

Number of individuals describes the sample total including queens and workers. Number of unique genotypes is the number of unique multilocus genotypes.
Number of colonies corresponds to either the number of nest entrances or the number of chambers from which individuals were collected. The genotype:colony
ratio describes the ratio between the number of genotypes and the number of sampled colonies (S/ Materials and Methods). The genotype:individual ratio
describes the ratio between the number of genotypes and the number of sampled individuals. A value of the genotype:individual ratio approaching 0 describes
genetic uniformity within a colony; a value of 1 describes sexual reproduction under random mating. Recombining populations are italicized and highlighted

in bold.

*Number of individuals includes the number of male mates estimated from the spermatheca content extracted and genotyped from four queens.

TA total of 12 of the 138 queens were reproductively active; the remaining 126 individuals were queen larvae.
*All 10 queens were alates emerging from the maternal colony and were not reproductively active at the time of collection.
SAll queens were raised in six consecutive generations in a breeding experiment in laboratory colonies and represent offspring from two colonies initially
collected in close proximity in Gamboa, Panama.

Rabeling et al. www.pnas.org/cgi/content/short/1105467108
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Table S2. Sample size, observed and expected heterozygosity, and inbreeding coefficient of multilocus genotypes and recombinant
populations (indicated by bold and italicized font)

Country State Locality/population Clone n Ho He Fis
Argentina Chaco Pampa del Indio PampaA 5 0.667 0.333 -1
Argentina Misiones Iguazu National Park IguazuA [6] 22 0.917 0.458 -1
Brazil Amazonas Caldeirdo n/a 243 (173) 0.372 0.369 —0.009
Brazil Amazonas Manaus ManausA 5 0.667 0.333 -1
ManausB [6] 5 0.917 0.458 -1
ManausC [7] 253 0.417 0.208 -1
Brazil Amazonas Parintins n/a 7 (5) 0.650 0.398 -0.773
Brazil Amazonas Reserva Ducke DuckeA [7] 8 0.417 0.208 -1
Brazil Amazonas Santa Rita RitaA 15 0.667 0.333 -1
Brazil Amazonas Sao Gabriel da n/a 8(8) 0.365 0.315 —-0.172
Cachoeira
Brazil Para Alter do Chao AlterA 9 0.75 0.375 -1
Brazil Para Belém n/a 25 (24) 0.451 0.466 0.034
Brazil Para Belterra BelterraA 17 0.417 0.208 -1
BelterraB 5 0.667 0.333 -1
Brazil Sdo Paulo Rio Claro RioClaroA 295 0.5 0.25 -1
RioClaroB 95 0.5 0.25 -1
Costa Rica Limén Cahuita CahuitaA 11 0.333 0.167 -1
Costa Rica Guanacaste Lomas Barbudal LomasA 20 0.833 0.417 -1
LomasB 5 0.75 0.375 -1
Costa Rica Limon Limoén LimonA 28 0.583 0.292 -1
Cuba Cienfuegos CubaA [4] 20 0.667 0.333 -1
Guatemala Peten El Remate RemateA [1] 35 0.417 0.208 -1
RemateB 10 0.5 0.25 -1
Guatemala Peten Tikal TikalA [1] 15 0.417 0.208 -1
Guyana Potaro-Siparuni Paramakatoi ParamakatoiA 24 0.75 0.375 -1
Honduras Copan Copan Archeological MuseumA 15 0.583 0.292 -1
Museum
Honduras Copan Copan Ruinas CopanA 9 0.25 0.125 -1
CopanB 16 0.167 0.083 -1
CopanC 5 0.5 0.25 -1
Mexico Chiapas El Panchan PanchanA 15 0.5 0.25 -1
PanchanB 5 0.667 0.333 -1
PanchanC 5 0.583 0.292 -1
PanchanD 5 0.5 0.25 -1
Mexico Chiapas Palenque PalenqueA 5 0.5 0.25 -1
PalenqueB 5 0.417 0.208 -1
Mexico Nuevo Leon Monterrey MonterreyA 50 0.417 0.208 -1
Mexico Tamaulipas El Cielo ElCieloA 35 0.5 0.25 -1
Nicaragua Matagalpa El Tuma ElTumaA 25 0.667 0.333 -1
Panama Bocas del Toro Bocas del Toro BocasA 33 0.333 0.167 -1
Panama Colon Ft. Sherman ShermanA [5] 10 0.583 0.292 -1
ShermanB 15 0.583 0.292 -1
ShermancC [2] 10 0.583 0.292 -1
Panama Colon Gamboa (breeding GamboaA [5] 93 0.583 0.292 -1
experiment)
Panama Colon Gamboa GamboaB [2] 13 0.583 0.292 -1
GamboaC 7 0.583 0.292 -1
Peru Cusco Huacaria HuacariaA 40 0.667 0.333 -1
Peru Cusco Pilcopata PilcopataA 5 0.667 0.333 -1
Peru Loreto Explorama Lodge, IquitosA 47 0.5 0.375 -1
Iquitos
Peru Madre de Dios CICRA, Los Amigos AmigosA 23 0.833 0.417 -1
AmigosB 6 0.75 0.375 -1
AmigosC 22 0.75 0.375 -1
AmigosD 41 0.75 0.375 -1
AmigosE 18 0.75 0.375 -1
AmigosF 39 0.75 0.375 -1
Trinidad Las Cuevas CuevasA 10 0.25 0.125 -1
CuevasB [3] 3 0.417 0.208 -1
CuevasC [8] 7 0.5 0.25 -1
Trinidad Arena Dam ArenaDamA [3] 20 0.417 0.208 -1
Rabeling et al. www.pnas.org/cgi/content/short/1105467108 7 of 16
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Table S2. Cont.

Country State Locality/population Clone n Ho He Fis
Trinidad Pierreville PierrevilleA 20 0.667 0.333 -1
Trinidad Simla Research SimlaA [4] 2 0.667 0.333 -1
Station
SimlaB 8 0.583 0.292 -1
SimlaC [8] 8 0.5 0.25 -1
Venezuela Aragua Ocumare de OcumareA [3] 5 0.417 0.208 -1
la Costa
OcumareB 5 0.583 0.292 -1
OcumareC 5 0.5 0.25 -1
OcumareD 21 0.667 0.333 -1
OcumareE 4 0.75 0.375 -1
Venezuela Aragua Rio Cumboto CumbotoA 2 0.667 0.333 -1
CumbotoB 3 0.667 0.333 -1
CumbotoC 5 0.75 0.375 -1
Total (asexual) 1,647 0.589 0.671 0.123
Total (sexual) 283 0.387 0.458 0.154
Total (sexual 1,930 0.430 0.545 0.210

and asexual)

Statistics are presented separately for each multilocus genotype in asexual populations. A total of eight identical multilocus genotypes is shared between
colonies from different localities, which are indicated by numbers in square brackets. For recombinant populations, the number of multilocus genotypes is
given in parentheses following the sample number; a single representative for each multilocus genotype was included to calculate the observed and expected
heterozygosity and the inbreeding coefficient. n/a, not applicable.
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Table S6. Sequence characteristics and best-fit models of sequence evolution as calculated by hLRTs and the AIC

All taxa Ingroup

Number Variable Variable Model Model
Gene of sites sites Pl sites sites Pl sites hLRTs AIC Bayesian partitioned ML
Global analysis
Ef1-a Exon1&2 1,071 370 363 43 35
Ef1-a Pos1&2 714 37 34 1 1 TIM+1+G TIM+1+G GTR+I+G TIM+I+G
Ef1-a Pos3 357 333 329 42 33 GTR+I+G GTR+I+G GTR+I+G GTR+I+G
Wg Exon 405 187 164 20 18
Wg Pos1 135 36 21 0 0 K80+G TrNef+G GTR+G TrNef+G
Wg Pos2 135 19 15 1 1 K80+G K80+G K80+G K80+G
Wg Pos3 135 132 128 19 17 HKY+G GTR+G GTR+G GTR+G
LWR Exon1&2 456 206 193 25 23
LWR Pos1 152 56 50 10 10 HKY+I+G HKY+I+G HKY+I+G HKY+I+G
LWR Pos2 152 28 26 0 0 GTR+G GTR+G GTR+G GTR+G
LWR Pos3 152 122 117 15 13 HKY+1+G HKY+1+G HKY+I+G HKY+I+G
col 387 146 140 146 140
COIl Pos1&2 258 30 28 30 28 TrN+I+G TIM+I+G GTR+I+G TIM+1+G
COI Pos3 129 116 112 116 112 TrN+G TrN+G GTR+G TrN+G
Total 2,319 909 860 234 216 n/a n/a n/a
Local analysis
COI-Il + tRNA Leu 1,515 n/a n/a 248 169
COI-Il Pos1&2 + tRNA Leu 1,034 n/a n/a 54 33 HKY+I+G TrN+I+G GTR+I+G TrN+I+G
COI-Il Pos3 481 n/a n/a 194 136 TrN+G TIM+1+G GTR+I+G TIM+I+G
Total 1,515 n/a n/a 248 169 n/a n/a n/a

“Model” columns indicate the models of sequence evolution implemented in the Bayesian and likelihood analyses. The global dataset consists of nuclear
and mitochondrial DNA sequence data for 84 Mycocepurus ingroup taxa and 87 attine and myrmicine outgroup taxa. The local dataset consists exclusively of
mitochondrial sequence data for 41 M. smithii individuals. Pl, parsimony-informative.

Table S7. Microsatellite loci developed for the fungus-gardening ant species M. smithii

GenBank
Number accession
Locus Repeat motif Primer (5'-3') Tm (°QO) Multiple x Dye Size range of alleles number
A5 (AQ) 14 F: GAACTTCGACGTGTAATTCG 56-57 B FAM 238-256 12 JNO055219
R: GCCACGGATAATTTCGAT
A6 (AQ)¢s F: CTCCTCCGGCTTTTCTCT 56-57 C FAM 101-123 12 JN055220
R: GATCGCGTACGGGTATATG
A9 (GT)13 F: AACCTTCCCTTTGCGAAT 56-57 A FAM 135-165 10 JNO055221
R: TATGTTTTGTGCCGTCGTTA
B1 (TC)q7 F: GTGAGACGTGTTCGACGAG 56-58 D HEX 90-132 15 JNO055222
R: GACTCGGAACCGACTTTCT
B4 (GQ)g F: GATTTGCATACGTCTGTCTAGC 56-57 D FAM 205-207 2 JNO055223
R: GCCTATTTCGTGTAAGGTAATG
(@ (TTG)e-A-(TTG)s F: CGCGTGATTCCTAGACAAC 56-57 D FAM 230-242 5 JNO055224
R: AACGTGAGTCAGAACAATACG
c6 (TTG)e-TTA-(TTG), F: ACCAGGTTACAGGCGTAGAT 56-57 B HEX 237-271 11 JNO055225
R: CGATACCATCACCACGACTA
c104 (CAA)g F: CGTCTACCAGTTCTGATTGC 56-57 C FAM 204-225 8 JN055226
R: ATCTGACATTTTGTCCAACG
c119 (CAG),4-(CAA)g- F: CGATTCTACATCGATTCTGCR 56-57 B FAM 111-135 9 JNO055227
(ATO)3 R: ATCTGACATTTTGTCCAACG
D8 (CAT)11-(CGT)s F: CGGACATGTTCTTCGAGAT 56-57 D HEX 159-189 10 JN055228
R: CGCGACCTTTGAAAGTAGAT
D11 (GAT)10-GAC-(GAT), F: ACTTCGTTCCTCCATCTTCC 56-57 C FAM 285-294 4 JNO055229
R: CGCATCATCAGTTTGTTCAC
D117 (TCA)»7 F: GATGTCATAGCAGGGCATTA 56-57 A FAM 196-242 8 JNO055230
R: TGTCGCGTTGTGTGTCTAT

Tm is the optimal annealing temperature. Loci were amplified in four multiplexed PCR reactions (A-D). The number of alleles and the size range were
determined from genotyping 1,930 individuals from 39 localities in Latin America. Clone sequences were deposited in GenBank under the accession numbers
given. F, forward; R, reverse. HEX, hexachlorofluorescein; FAM, carboxyfluorescein.
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Table S8. Primers used for PCR amplification and DNA sequencing

Primer Sequence (5'-3') Position Source

EF1-a F1 copy

F1-494F AAGGAGGCTCAGGAGATGGG Apis 494-513 31)
F1-1044R CGTCTTACCATCGGCATTGCC Apis 1044-1019 (31)

F1-792F TTGGCGTGAAGCAGCTGATCG Apis 792-812 (31)
F1-1189R ACCTGGTTTYAAGATRCCGGT Apis 1189-1169 (31)
F1-1109F CCGCTTCAGGATGTCTATAA Apis 1109-1128 (31)
F1-1551R CCGCGTCTCAGTTCYTTTAC Apis 1551-1532 (31)
F1-1424F GCGCCKGCGGCTCTCACCACCGAGG Apis 1424-1448 (55)
F1-1829R GGAAGGCCTCGACGCACATMGG Apis 1829-1808 (55)

Wg

MycoWg578F TGCACGGTGAAGACTTGCTGGATGCG Pheidole 578-603 Modified from ref. 58
Wg1032R ACYTCGCAGCACCARTGGAA Pheidole 1032-1013 (59)

LW Rh

LR143F ACAAAGTGCCACCGGAGATGCT Apis 144-165 Modified from ref. 58
MycoLR639ER CTTACCGGTTTCCATCCGAACA Apis ~639-624 Modified from ref. 58
COI-ll

LCO1490 GGTCAACAAATCATAAAGATATTGG D. yakuba 1490-1515 (60)
HCO2198 TGATTTTTTGGTCACCCTGAAGTTTA D. yakuba 2198-2223 (60)

cl13 ATAATTTTTTTTATAGTTATACC Apis 2002-2025 61)

ch4 ATTTCTTTTTTTCCTCTTTC Apis 2549-2568 61)
Mycolerry CAACAYYTATTTTGATTTTTITGG Apis ~2181-2203 Modified from ref. 57
MycoBen CAYGAYACHTATTATGTAGTRGC Apis ~2613-2591 Modified from ref. 62
MycoGeorge ATACCTCGTCGATATTCTGA D. yakuba 2773-2792 Modified from ref. 63
Marilyn TCATAAGTTCARTATCATTG D. yakuba 3364-3383 (63)

Lewis TATTATTTGRGARTCCCTCT Apis ~2660-2679 This study

Position numbers correspond to Apis mellifera GenBank accession number X52884 (EF1-aF 1), Pheidole morrisi GenBank accession number AY101369.1 (Wg),
A. mellifera GenBank accession number U26026 (LW Rh), Drosophila yakuba GenBank accession number X03240 (COI and COIll), and the A. mellifera nucleotide
position given in ref. 57 (COI). For all genes, the PCR product was amplified directly from the DNA extract.
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